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Abstract

This paper deals with the design of a predictive-integral

current controller for wind generators connected to the

grid. The goal is to achieve a decoupled control of d- and

q-axes current components at the connection point, which

results in a decoupled control of the active and the reac-

tive power exchanged between the generator and the grid.

Furthermore, the control system is designed in order to

achieve a deadbeat closed-loop system. The robustness

of the closed-loop dynamic response and the active and

reactive-power coupling when system-modelling errors ex-

ist are studied. Simulation and experimental results will

be presented to validate the main contributions of this

work.
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1 Introduction

Electricity generation making use of renewable energy
sources has experienced a great growth in the last few
years [1]. Wind generators are, probably, the clearest
examples of this upgrowth. These systems must trans-
fer the energy efficiently to the utility or to the load
while supplying the necessary reactive power. For this
purpose, current-controlled voltage-source electronic
converters are normally used.

Current-control schemes can be classified into two
main groups (see [2] and [3] for more details):

1. Linear control schemes with conventional pulse-
width modulators that split current-control and
modulation parts. This group comprises the PI
average-mode controllers and also predictive and
deadbeat control schemes.

2. Non-linear control schemes, including hysteresis-
based controllers, pulse density modulation and
also neural-network-based and fuzzy-logic con-
trollers.

Predictive current controllers are recently being pro-
posed very often in the literature: in this kind of con-
trollers, the converter-output voltage is calculated in
order to make the measured current to track the refer-
ence based on a predictive model [4]. The implementa-
tion of these current controllers is not ideal due to fac-
tors such as modelling errors or dead-time effects [5],
which may substantially affect the dynamic perfor-
mance or even cause instability problems. These is-
sues have motivated this work.

Predictive current controllers applied to power-
electronic converters can be found in [6–9]: in [6] a
robust current controller is designed to obtain a dead-
beat system for active filters and PWM rectifiers and
a study of the robustness when there are modelling
errors in the inverter-output inductance is included.
Reference [7] deals with a predictive-current regulator
applied to an induction-motor control. It also stud-
ies the effects of errors in some parameters on the
dynamic performance. In [8] a dead-beat current con-
troller for converters with both, variable or fix output
frequency is developed. It uses an error law for the
measured current which improves the stability when
there are modelling errors in the load inductance. Fi-
nally, in [9], a predictive-current controller design for
single-phase voltage-source converters connected to
the grid is presented. A study of the robustness to
the connection-inductance mismatch is included.

The present work deals with the design of a predictive-
integral current controller to implement active- and
reactive-power control in a wind generator, obtaining
a decoupled dead-beat closed-loop system. Unlike the
previous predictive-current controllers, an integral ac-
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tion is added in order to guarantee zero tracking error
in steady state for step changes in the reference, even
when there are parameter errors. The dynamic per-
formance is also studied.

The paper is organised as follows. A discrete decou-
pled model of the wind-generation system is obtained
in Section 2. Section 3 explains the design for the
predictive-integral controller. The stability limits of
the closed-loop system when there are errors in the
system parameters and how these parameter-errors
affect the system dynamic and d- and q-axis coupling
are studied in Section 4. In Section 5, the main results
are tested through experimentation with a prototype.
Finally, some conclusions are given in Section 6.

2 Model of the grid-connection system

Fig. 1 shows a possible configuration, among others,
of wind generator. The main elements are: an induc-
tion machine driven by a wind turbine, the generator-
side converter, the grid-side converter (the two con-
verters share the D.C. link and they are two-level
voltage-source converters) and an inductive filter plus
a transformer at the grid side.

The generator-side converter controls the wind gener-
ator, resulting in a real power pg flowing into the d.c.-
link capacitor. At the same time, the grid-side con-
verter controls the active power flowing into the grid
(p) and the reactive power required (q). There are sev-
eral options for the control of the induction generator
according to the operation specifications: from a sim-
ple Indirect Field-Orientated Control (IFOC) scheme
to a more sophisticated control scheme.

As the real power going into the capacitor pc is equal
to pg − p, the equation pg = p must be fulfilled in
steady-state if the average value of the capacitor volt-
age has to remain constant. Although losses have been
neglected, closed-loop control of the d.c.-link voltage
should take care of them.

Fig. 2 shows the single-phase equivalent circuit of the
grid-side converter connected to the electrical grid,
where the converter has been modelled as an ideal
voltage source u, v is the grid voltage, i stands for
the current injected into the grid, and r and L are,
respectively, the resistance and the inductance that
model the filter plus the transformer. In this paper
the three-phase connection system is supposed to be
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Fig. 1: Wind generator system
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Fig. 2: Single-phase equivalent circuit of the converter con-
nected to the grid

balanced.

The state-variable model of the three-phase system
can be written by using the Park’s Transformation
(see [10]) with a reference frame rotating with the fre-
quency of the grid voltage:

d

dt

[
id
iq

]
=

[− r
L ω

−ω − r
L

]

︸ ︷︷ ︸
A

[
id
iq

]

︸︷︷︸
id,q

+
[

1
L 0
0 1

L

]

︸ ︷︷ ︸
B

[
ud − vd

uq − vq

]

︸ ︷︷ ︸
ud,q−vd,q

(1)

where id and iq are, respectively, the d and q compo-
nents of the current (i), ud and uq are the inverter-
output voltage components, vd and vq are the grid
voltage components, and ω is the angular speed of
the rotating frame used for the Park’s Transforma-
tion. Note that the Park’s transformation converts
all sinusoidal variables of frequency ω into d.c. mag-
nitudes.

By using a power-invariant Park’s transformation,
and by choosing the rotating reference frame so that
the vq component is always zero in (1), the instan-
taneous real power, p, and the instantaneous reac-
tive power, q injected into the grid by the converter
are [11]:

p =vdid + vqiq = vdid (2)
q =− vdiq + vqid = −vdiq (3)

Hence p and q can be controlled by id and iq com-
ponents, respectively, and active- and reactive-power
control is reduced to two current controllers. The con-
trol inputs in (1) are ud and uq, while vd is a distur-
bance which can be measured.

The eigenvalues of the matrix A in (1) are λ1,2 =
− r

L ± jω with j =
√−1. The eigenvectors associated

with these are the columns of matrix V as follows:

V =
[

1 −j
−j 1

]
(4)

Gathering d and q components in column vectors with
subscripts “d,q” and introducing vector xd,q so that
id,q = Vxd,q, the following system is obtained:

dxd,q

dt
= V−1AV︸ ︷︷ ︸

Λ

xd,q + V−1B (ud,q − vd,q) (5)
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with:

Λ =
[− r

L + jω 0
0 − r

L − jω

]
, and B = L−1I (6)

Since V−1B = BV−1 and by using the changes of
variables u

′
d,q = V−1ud,q and v

′
d,q = V−1vd,q, a

fully decoupled system can be written as:

dxd,q

dt
= Λxd,q + B

(
u
′
d,q − v

′
d,q

)
(7)

As the controller is implemented in a microprocessor
based system, a discrete-time model of (7) must be ob-
tained. If ω is constant, (7) is a linear-time-invariant
model and the discrete-time system which gives exact
results at the sampling times [12] is:

[
xd

xq

]

k+1

=

Ac︷ ︸︸ ︷[
ad 0
0 aq

] [
xd

xq

]

k

+

Bc︷ ︸︸ ︷[
bd 0
0 bq

] [
u
′
d − v

′
d

u
′
q − v

′
q

]

k

(8)

where xd and xq are the state variables, u
′
d and u

′
q

are the control inputs, and v
′
d and v

′
q are measured

inputs. The coefficients (ad, aq) and (bd, bq) are pairs
of complex conjugated numbers and matrices Ac and
Bc are calculated as:

Ac = eΛts , Bc =
(∫ ts

0

eΛtdt

)
B (9)

ts being the sampling interval.

System (8) gives the value of the state variables at
instant k + 1 based on the values of the state vari-
ables and the inputs at instant k. As the controller
may use a large part of the sampling time to calculate
the system input from references and measurements,
a reasonable assumption is to consider that the sys-
tem input at instant k is the one calculated by the
controller using measurements up to instant k − 1.
In order to include this issue in the model [13], two
new state variables are added to (8) to account for
the control-calculated outputs (u

′∗
d and u

′∗
q ) so that

u
′
d(k) = u

′∗
d (k − 1) and u

′
q(k) = u

′∗
q (k − 1).

Finally, taking these new added state variables into
account, system (8) can be written as:
[
xn

u
′
n

]

k+1

=
[
an bn

0 0

] [
xn

u
′
n

]

k

+
[
0 −bn

1 0

] [
u
′∗
n

v
′
n

]

k

(10)

where subscript n stands for d and q axes.

3 Design of the control system

The predictive-current controller designed here in-
cludes an integral action to guarantee zero tracking
error in steady state for step changes in the reference.

Taking (10) into account, the proposed control law is:

u
′∗
n (k) =

1

b̂n

x∗n(k)− ân

b̂n

x̂n(k+1)+ v̂
′
n(k+1)+gn(k) (11)

X
∗
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Fig. 3: Predictive-Integral control scheme

gn(k + 1) = gn(k) + cnts [x∗n(k − 2)− xn(k)] (12)

where x̂n(k+1) and v̂n(k+1) are the predicted values
for xn and vn, respectively, at k+1 based on the infor-
mation up to k, gn is the integral of the error between
the reference input x∗n and the system output, and cn

weights that integral action. In addition ân and b̂n

are the estimated values of the model parameters.

A very reasonable assumption for v̂
′
n(k + 1) is to con-

sider constant main voltage so that v̂
′
n(k+1) = v

′
n(k),

which is exactly true if an infinite bus system is con-
sidered. Moreover, the predicted value x̂n(k + 1) can
be obtained by using (10) as prediction model:

x̂n(k + 1) = ânxn(k) + b̂nu
′
n(k)− b̂nv

′
n(k) (13)

By applying the Z transform, the new closed-loop-
system output is:

Xn(z) = Fn(z)X∗
n(z) (14)

where:

Fn(z) =
1
z2

[ bn

b̂n
z2(z − 1) + bncnts

Df (z)

]
(15)

with

Df (z) = (z+ân)(z−an)(z−1)+
bn

b̂n

â2
n(z−1)+bncnts (16)

Note that if (15) is closed-loop asymptotically stable,
the static gain is always Fn(1) = 1. Furthermore, if
there are no modelling errors the closed-loop system
is a second order deadbeat system Fn(z) = 1/z2.

The block diagram of the whole control system is
shown in Fig. 3.

4 Performance with parameter errors

The dynamic performance of the closed-loop system
can be affected by several factors such as modelling
errors in the parameters of the filter and the trans-
former, among others. For that reason, the robustness
of the control scheme to modelling errors in the resis-
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tance r and the inductance L has been investigated
regarding the two aspects described below.

If the parameters used for design purposes are Ln and
rn and the actual filter values are L and r, it can be
written:

r =rn + ∆r (17)
L =Ln + ∆L (18)

with ∆r and ∆L the parameter errors.

A. Stability

The stability of the closed-loop system has been in-
vestigated for −rn ≤ ∆r ≤ rn and −Ln ≤ ∆L ≤ Ln

by calculating the closed-loop transfer-function poles.
The region for which the closed-loop system remains
stable for the prototype considered has been shadowed
in Fig. 4 for two different values of cn in (12).

The closed-loop system is stable for all resistance val-
ues specified in (17) and 0.475Ln ≤ L ≤ 2Ln when
cn = 25 · 103, as it is shown in Fig. 4(a). Neverthe-
less, the stability region is reduced dramatically as cn

is increased. As an example, Fig. 4(b) shows the sta-
bility region for cn = 120 · 103. Further simulations
show similar stability regions for 0 ≤ cn ≤ 25 · 103.

B. Transient response

The control system was designed to achieve a dead-
beat response in both axes without overshoot and with
no coupling between them. However, the transient
response deteriorates when r and L are different to
the expected ones (see (17) and (18)).

Taking into account that xd,q = V−1id,q and x∗d,q =
V−1i∗d,q, the system output can be calculated as
id,q = Fid,q

(z)i∗d,q, where:

Fid,q
(z)

︷ ︸︸ ︷[
F11(z) F12(z)
F21(z) F22(z)

]
= V

[
Fd(z) 0

0 Fq(z)

]
V−1 (19)
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Fig. 4: Closed-loop stability with rn = 1.5 Ω and Ln =
23.3 mH and: (a) cn = 25 · 103, and (b) cn = 120 · 103

The responses to a unit step at the set-point of sys-
tems F11(z) and F22(z) have been investigated by
calculating the overshoot (Mp), and the 1%-settling
time (tset). Simulations have been carried out for
0.475Ln ≤ L ≤ 2Ln and 0 ≤ r ≤ 2rn.

The overshoot in % is plotted in Figs. 5(a)-(b) for
cn1 = 25 · 103 and cn2 = 10 · 103, respectively. The
worst value shows Mp = 109.1% for L = 0.5Ln in
both cases. However, for L = 2Ln, the overshoot
diminishes as the value of the coefficient cn decreases:
from 15.9% ≤ Mp ≤ 21.6%, for cn1 = 25 · 103, to
4.3% ≤ Mp ≤ 8.1% for cn2 = 10 · 103 (see Table 1).

Figs. 6(a)-(b) show the settling time obtained for
cn1 = 25 · 103 and cn2 = 10 · 103, respectively. The
lower the coefficient cn is, the greater the settling time
is, as it can be seen in Table 1. The worst values are
found for the lowest inductance value (L = 0.475Ln).

The results shown in Figs. 5(a)-(b), Figs. 6(a)-(b),
and Table 1, reveal that coefficient cn must be cho-
sen carefully to achieve a good dynamic performance.
In this paper, cn2 is the one which provides the best
performance and has been used in the rest of the work.
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Fig. 5: Overshoot obtained with: (a) cn1 = 25 · 103, and
(b) cn2 = 10 · 103

Table 1: Minimum and maximum values of the overshoot
(Mpmin , Mpmax) and the settling time (tset min, tset max)
obtained for several coefficients cn

Mp and tset/ts

obtained with 0 ≤ r ≤ 2rn

cn L = 0.475Ln L = Ln L = 2Ln

Mp (%)

25 · 103 (91.1, 109.1) (0.4, 6.1) (15.9, 21.6)

10 · 103 (91.1, 109.1) (0.0, 6.1) (4.3, 8.1)

tset/ts (No. of samples)

25 · 103 (48, 71) (2, 9) (37, 41)

10 · 103 (62, 71) (2, 20) (44, 46)
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Fig. 6: Settling time in number of samples: (a) cn1 =
25 · 103, and (b) cn2 = 10 · 103

C. Coupling of the closed-loop system

In order to quantify the d− and q− axis coupling of
the closed-loop system (see [14]), the impulse-response
variance of the system F12(z) (equivalent to that one
obtained with F21(z)) has been analysed. This vari-
ance has been calculated as [15]:

I =
1

2πj

∮
H(z)H(z−1)

dz

z
(20)

where H(z) stands for the transfer functions F12(z) or
F21(z), j is the imaginary unit, and the factor 1/2π is
introduced for scaling.

Fig. 7 shows the integral value I: the coupling is
almost independent of the resistance modelling error,
and the worst case is found for L = 0.475Ln, with
5.54 A2 ≤ I ≤ 6.58 A2, whereas for L = 2Ln the
value range for the index is 0.013 A2 ≤ I ≤ 0.017 A2.

5 Experimental results

The control scheme has been implemented on a PC us-
ing the Matlab Real-Time-Workshop. The prototype
consists of a wind-generation system such as that de-
picted in Fig. 1 where only the grid converter has
been used to test the performance of the controller.
A 2.2 kW three-phase voltage-source converter (IR-
MDAC3) has been used. The switching frequency
and the sampling frequency have been set to 1050 Hz
and 2100 Hz, respectively. The filter and the trans-
former have been modelled by r = 1.5 Ω in series
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Fig. 7: Value of the integral I in A2

with L = 23.3 mH. The grid line-to-line voltage was
vLL = 400 V, and the grid frequency was f = 50 Hz.

Let Lm be the inductance value used in the control
design. To obtain a mismatch in the inductance and
assuming that L ≈ Ln, Lm has been modified from
its nominal value, Ln, so that 0.5Lm ≤ L ≤ 2Lm.

The current references change as follows: i∗d changes
from 0 to 2 A at t = 0.5 s and i∗q changes from 0 to
-1 A at t = 0.6 s. Coefficient cn was set to 10 · 103.

Fig. 8(a) plots the responses of the currents id and iq
obtained without modelling errors: the currents are
fully decoupled; there is no overshoot and no steady-
state error. Fig. 8(b) shows the active (p = 800 W)
and reactive (q = 400 VAr) powers injected into the
electrical grid. If Figs. 8(a) and 8(b) are compared,
it will be noted that p and q are proportional to the
currents id and iq, respectively. A detail of the current
id is shown in Fig. 8(c), where the dead-beat response
can be seen. Finally Fig. 8(d) shows a detail of the
line current.

In order to study the controller performance close to
its stability limits, two tests have been performed for
Lm = 2L and Lm = 0.5L. Figs. 9(a)-(b) show the
results when Lm = 2L: the poor responses of the cur-
rents id and iq are shown in Fig. 9(a) (Mp = 99.7%
with a strong coupling between axes). Fig. 9(b)
plots the response of the line current, which shows sig-
nificant oscillations until the steady-state is reached.
Figs. 9(c)-(d) show the results for Lm = 0.5L. The
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Fig. 8: Time response of (a) the current components and
(b) active and reactive powers injected into the grid. (c)
Detail of the current id: (−·) reference, and (–) measured
current. (d) Detail of the measured line current iR
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Fig. 9: Experimental results. Lm = 2L: (a) d− q current
components, and (b) detail of the measured line current
iR. Lm = 0.5L: (c) d − q current components, and (d)
detail of the measured line current iR

responses of the currents id and iq show better be-
haviour than in the previous case (Mp = 14% with a
smaller d− q coupling).

6 Conclusions

Nowadays, power-electronic converters are used to
provide flexible active- and reactive-power control of
wind generators connected to the grid, which is even-
tually seen as d- and q-axis current control.

This paper studies a predictive-integral current con-
troller for PWM voltage-source converters connected
to the grid. Unlike other classical control schemes
which may exhibit a time response with overshoot or
with non-zero error in steady-state, this control sys-
tem has shown very good transient and steady-state
performances when the system parameters are known
exactly (the steady-state is reached in two sampling
periods without overshoot and with zero tracking er-
ror), but the paper has also revealed that the perfor-
mance deteriorates when there are modelling errors
in the parameters of the connection impedance. The
paper has studied how the closed-loop performance is
affected by these errors: the system damping deterio-
rates and d- and q-axis dynamics are coupled.

The closed-loop system is robust for a wide range of
parameter errors. Moreover, it is proved that high
values of the integral-weighting coefficient improve the
speed of the closed-loop response, but deteriorates the
damping and the cross-coupling between axes.

The main contributions have been validated by means
of simulation and experimental results in a prototype.
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